Artificial Neural Networks Approach for Solving Stokes Problem

نویسندگان

  • Modjtaba Baymani
  • Asghar Kerayechian
  • Sohrab Effati
چکیده

In this paper a new method based on neural network has been developed for obtaining the solution of the Stokes problem. We transform the mixed Stokes problem into three independent Poisson problems which by solving them the solution of the Stokes problem is obtained. The results obtained by this method, has been compared with the existing numerical method and with the exact solution of the problem. It can be observed that the current new approximation has higher accuracy. The number of model parameters required is less than conventional methods. The proposed new method is illustrated by an example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing Multiple Response Problem Using Artificial Neural Networks and Genetic Algorithm

  This paper proposes a new intelligent approach for solving multi-response statistical optimization problems. In most real world optimization problems, we are encountered adjusting process variables to achieve optimal levels of output variables (response variables). Usual optimization methods often begin with estimating the relation function between the response variable and the control variab...

متن کامل

Solving nonlinear Lane-Emden type equations with unsupervised combined artificial neural networks

In this paper we propose a method for solving some well-known classes of Lane-Emden type equations which are nonlinear ordinary differential equations on the semi-innite domain. The proposed approach is based on an Unsupervised Combined Articial Neural Networks (UCANN) method. Firstly, The trial solutions of the differential equations are written in the form of feed-forward neural networks cont...

متن کامل

Geoid Determination Based on Log Sigmoid Function of Artificial Neural Networks: (A case Study: Iran)

A Back Propagation Artificial Neural Network (BPANN) is a well-known learning algorithmpredicated on a gradient descent method that minimizes the square error involving the networkoutput and the goal of output values. In this study, 261 GPS/Leveling and 8869 gravity intensityvalues of Iran were selected, then the geoid with three methods “ellipsoidal stokes integral”,“BPANN”, and “collocation” ...

متن کامل

On the convergence speed of artificial neural networks in‎ ‎the solving of linear ‎systems

‎Artificial neural networks have the advantages such as learning, ‎adaptation‎, ‎fault-tolerance‎, ‎parallelism and generalization‎. ‎This ‎paper is a scrutiny on the application of diverse learning methods‎ ‎in speed of convergence in neural networks‎. ‎For this aim‎, ‎first we ‎introduce a perceptron method based on artificial neural networks‎ ‎which has been applied for solving a non-singula...

متن کامل

An artificial Neural Network approach to monitor and diagnose multi-attribute quality control processes

One of the existing problems of multi-attribute process monitoring is the occurrence of high number of false alarms (Type I error). Another problem is an increase in the probability of not detecting defects when the process is monitored by a set of independent uni-attribute control charts. In this paper, we address both of these problems and consider monitoring correlated multi-attributes proce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010